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Abstract

We study the properties of billiards (mainly elliptical) as dynamical systems, in particular,
their integrability, and the existence and computation of periodic orbits. An implementation of
the involved computations in a free CAS (Maxima) is also presented, as a tool for visualization
and experimentation, which can be useful in web-based courses and distance learning.

1 Introduction
In a realistic setting, even the simplest question about the motion in a billiard can be difficult to solve.
For instance, starting with a ball at (x0, y0), kicked with initial velocity (vx, vy), we may ask: ’Will
the ball hit the table at the fixed but otherwise randomly chosen position (x, y) before 106 rebounds?’
In general, the answer will be ’No’, because there is a loss of energy when rolling and impacting on
the table, so after a few rebounds the ball will stop, probably without reaching the goal point. Thus,
we must assume that energy is conserved, so the motion of the ball continues indefinitely. Now the
problem is that the only way we can answer, is following the ball’s trajectory from the starting point,
maybe along a really large number of rebounds. It is not feasible to try to answer armed just with
pencil and paper, so we go for a computer and write a program to construct the trajectory given the
data (x0, y0) and (vx, vy), using Newton’s equations. We are then modeling the billiard as a dynamical
system. Here we face the following problem: The computer can store the intermediate values of the
position only up to a certain precision. This fact will influence the answer depending on whether
the system is chaotic or not. In the first case, sensitivity on initial conditions will render our answer
useless: Our prediction will depend on the precision used to describe the dynamics, and each rebound
will amplify the initial errors committed in determining positions. Therefore, we need to be sure
about the chaotic character of our billiard before we start to play.

It turns out that the chaotic character of a billiard depends on its shape. To be precise, rectangular
and elliptical billiards determine integrable dynamical systems, hence their dynamics are regular. But
other polygons or smooth boundaries, give rise to non-integrable, chaotic systems (indeed, there is
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a conjecture by Birkhoff [2] stating that among all the billiards whose shape is given by a smooth,
convex curve, only the elliptic case is integrable). We will explore what can be said about the motion
in this case, and what kind of questions about it make sense, trying to keep the mathematics (and
the physics) at a level as elementary as possible. In doing so, we will see that billiards provide an
excellent environment for blending Classical Mechanics, Mathematics (Calculus, Geometry) and the
use of Computer Algebra Systems (CAS). The possibility of numerically and visually experimenting
with a concrete physical system, makes this an interesting tool, well suited for distance learning and
self-study.

In this paper, we use the CAS Maxima (https://maxima.sourceforge.io), but every-
thing here can be easily adapted to any other CAS. Some general references for dynamical systems
are [1], [9], [12], for billiards see [7], [11], [13]. To save space, this paper does not include the source
code of all the functions used in the text, only the main functions are shown in Section 6 (full code is
available upon request).

2 Dynamical Systems and their integrability
For us, a dynamical system will be any physical system Σ that can be modeled using Newton’s
equations. A configuration will be any point in RN , where N ∈ N. A given system will not be able
to attain any arbitrary configuration. The allowed configurations fill up a submanifold Γ ⊂ RN called
the configuration space, and the dimension r = dim Γ is called the number of degrees of freedom of
the system.

The time evolution of Σ will be described by a smooth map x : I ⊂ R → Γ ⊂ RN , carrying t
to x(t), where I is an interval containing 0 ∈ R. Newton’s equation are then written as md2x

dt2
(t) =

F(x(t)), where F : Γ ⊂ RN → RN is the force field (notice that, unless otherwise explicitly stated, we
are going to consider only autonomous, velocity-independent forces). Defining the linear momentum
p = mdx/dt this is also equivalent to dp

dt
(t) = F(x(t)).

Example 1 Here N = 1 and Γ = R. We assume that the motion is determined by a potential V (x),
so x : I ⊂ R→ R satisfies Newton’s equation mẍ = −∇V (x) = −V ′(x) (In the sequel, we will use
points over a letter to denote derivatives with respect to time t). More precisely, for each t ∈ I ⊂ R
we have a configuration x(t) ∈ R, and the curve t 7→ x(t) satisfies the ordinary differential equation
mẍ = −V ′(x(t)). This is an example of one-dimensional motion. 4

We now introduce two important classes of systems: the conservative and the integrable ones.
They both have in common the existence of conserved quantities of the motion.

2.1 Conservative systems
Consider the case of a time-independent force which comes from a potential function V ∈ C∞(Γ).
Thus, we have

mẍ(t) = −∇V (x(t)) . (1)

These systems form a particular class, called conservative systems. The reason is that a certain func-
tion, called the energy, is conserved along their motion.
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To explain this fact, we need to introduce some more terminology. Recall that the allowed con-
figurations form the configuration space Γ ⊂ RN , now we are going to introduce a space contain-
ing configurations and momenta, the so called phase space. Generally speaking1 this space is just
M = Γ × RN ⊂ R2N (but see the footnote at the beginning of the next subsection). Each trajectory
on configuration space, x : I ⊂ R → Γ ⊂ RN , determines another curve on phase space, called its
lifting, denoted x̃ and acting as x̃(t) = (x(t),p(t)).

Remark 2 The points on phase spaceM ⊂ R2N are called the states of Σ. They can be identified with
the set of initial conditions for Newton’s equations; thus, each state uniquely determines the evolution
of the system (by the existence and uniqueness theorems for ordinary differential equations).

For a conservative system, there exists a function on phase space E : M → R such that its
composition with the lifting of the actual trajectory x(t) is a constant mapping. This function, called
the total energy of Σ, is defined as E(x,y) = 1

2
m 〈y,y〉 + V (x), where 〈·, ·〉 is the Euclidean scalar

product on RN , and V : Γ ⊂ RN → R is the potential.

Theorem 3 (Conservation of Energy) For any trajectory x : I ⊂ R→ Γ ⊂ RN (that is, a solution
of Newton’s equations (1)), we have d

dt
(E ◦ x̃)(t) = 0.

The proof is just a direct computation using the chain rule and equations (1).

Example 4 (One-dimensional motion) For any conservative system in one dimension, the trajectory
x : I ⊂ R → Γ ⊂ R must satisfy ε = E(x,mẋ) = 1

2
mẋ(t)2 + V (x(t)) for some constant ε ∈ R.

Then, we can solve for ẋ to obtain ẋ(t) =
√

2(ε− V (x))/m. Moreover, recalling the inverse function
theorem, applied to t = t(x), we get (in the region ε > V (x) bounded by the turning points, that is,

those configurations for which the velocity is zero, ẋ(t) = 0): dt
dx

= 1/
√

2
m

(ε− V (x)). Therefore, we
can compute t = t(x) by means of an integration:

t =

∫
dx√

2
m

(ε− V (x))
,

and once the relation t = t(x) is explicitly determined, we can invert it to get x = x(t) if needed. Thus,
we get the following important fact: for one-dimensional systems, the existence of one conserved
quantity (the energy) leads to the solution of the equations of motion by a quadrature (the computation
of an integral). We say that one-dimensional conservative systems are integrable. 4

2.2 Integrable systems
We have just seen that one-dimensional conservative systems are integrable. How about higher di-
mensional systems? To answer this question, think of the motion not taking place in configuration
space, but on phase space M . This is a 2r−dimensional space, where r is the number of degrees of
freedom2. If we have a set of n functions on phase space which are conserved quantities, f1, . . . , fn,

1That is, in absence of non-holonomic constraints.
2We have r = dim Γ and M defined as M = Γ × RN , but the factor RN can actually be replaced by Rr because

velocities must be tangent to Γ ⊂ RN .
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then the motion will occur on the intersection M(c1, . . . , cn) = M ∩ f−11 ({c1}) ∩ · · · ∩ f−1n ({cn}),
where c1, . . . , cn are some real constants.

The dimension of this intersection (as a submanifold of M ) is 2r−n. There are some possibilities
here. For instance, in the most favorable case in which n = 2r− 1, the dimension of this intersection
(as a submanifold of M ) will be exactly 1, that is, we will have the motion restricted to a curve
which must be the solution we are looking for. In Example 4, r = 1 = N , so the phase space was
2−dimensional. The existence of just one conserved quantity defined on phase space, the energy,
restricts the motion to the solution curve x(t). This kind of systems, with r degrees of freedom and
n = 2r − 1 independent conserved quantities defined on phase space (also called first integrals or
simply integrals of the motion)3, are called maximally superintegrable.

When the system Σ has r degrees of freedom and exactly n = r independent first integrals, we
say that it is integrable, and superintegrable if the number n of independent first integrals satisfies
r < n < 2r − 1.

Example 5 (Central forces) A force acting on a particle is called a central force if its supporting line
(the line along which it acts on bodies) passes through a fixed point O, which is then called the center
of the force. Thus, if we denote by r(t) the position of the particle at instant t ∈ I ⊂ R as measured
from O, so we get the curve in configuration space r(t) = Ox(t), we will have F(r(t)) = f(r(t))er,
with f : Γ ⊂ RN → R a smooth function and er the unit vector in the direction of Ox(t) (we omit
the time dependence to avoid overloading the notation).

When describing the motion under the action of a central force, the notion of angular momentum
is crucial. The angular momentum with respect to a point P ∈ RN of a particle of mass m, described
by the trajectory x(t), is defined as the function on phase space given by LP (x,y) = P x×P y. Thus,
if we consider the lifting of the curve x(t) to phase space, and evaluate the angular momentum on it,
writing LP (t) = LP (x(t),mẋ(t)) for the composition, we get LP (t) = mPx(t)×P ẋ(t). In the case
of central forces we obviously take P = O, yielding the more common expression L(t) = mr(t)×ṙ(t).

A straightforward computation shows that, when the force is central, L̇(t) = 0, that is: the an-
gular momentum is a first integral in any central-force system. Hence, central-force systems (with
r = 3 degrees of freedom) are superintegrable (as the three components of L are conserved indepen-
dently) 4. 4

The motion of integrable systems is regular and stable. Under very mild conditions, precisely
stated in the so-called Arnold-Liouville-Mineur (ALM) theorem, the trajectories on phase space are
bounded and either periodic or quasi-periodic. In any case, small deviations from the initial condi-
tions yield new trajectories remaining close to the original ones for some time (actually, two initially
close trajectories will diverge linearly in time [4]). This feature survives when projecting down to
configuration space: no chaos is possible in integrable systems.

More precisely, a geometric interpretation of the ALM theorem is this: When a system is inte-
grable, it admits a special class of coordinates, called action-angle coordinates; when the system is

3Some additional assumptions are needed in order to guarantee that these integrals are functionally independent, that
is, the intersections above effectively define a submanifold with reduced dimension, but we will not care about these
details here, and we will simply assume that all the required conditions are satisfied.

4In fact, these systems are maximally superintegrable, due to the existence of an additional first integral provided by
the Laplace-Runge-Lenz vector, which only has one independent component, giving a total of 5 = 2 · 3 − 1 integrals of
motion.
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expressed in terms of these, its phase space becomes foliated by tori. Each torus is labeled by a partic-
ular value of the action coordinate J (for r = 2), and on that torus, the motion is linear, parameterized
by the angle coordinate θ. Figure 1 (taken from [8]) illustrates the aspect that phase space adopts in a
typical integrable system.

Figure 1: Foliation of phase-space by tori

3 Billiards
There are some properties common to all billiards considered as dynamical systems. Fist of all, as
mentioned in the Introduction, we consider that the collisions of the ball on the boundary occur with-
out exchanging energy (elastic collisions), so we have a conserved quantity. Being a two-dimensional
system, every time there exists another first integral the billiard under consideration will be integrable.

The next observation is that the impact force acts along the normal to the boundary at the point of
impact, in absence of friction. This property alone, allows us to deduce many important consequences
that characterize the simplest cases of rectangular and circular billiards. One of them is the reflection
law.

Theorem 6 (Reflection law) In a billiard collision, the angle of reflection equals the angle of inci-
dence.

Example 7 (A rectangular billiard) In this case, the hypothesis of elastic collisions means that en-
ergy (equivalently, v2) is conserved, and the reflection law, taking into account the changes of ori-
entation occurring at the boundary, implies that the absolute value of the horizontal component of
velocity, |vx|, is conserved too (in fact, both |vx| and the vertical component |vy| are conserved). The
rectangular billiard is integrable, hence not chaotic. 4

3.1 Circular billiards. The Poncelet porism
The next case to consider is that of a circular billiard. Here, the forces along the normal of the bound-
ary always point radially, that is, they are directed toward the geometric center of the circumference:
We have a central force problem. Thus, aside from the energy we have another conserved quantity,
angular momentum L (recall Example 5). This system is also integrable, not chaotic.
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For circular billiards, some interesting phenomena begin to appear. Take a Cartesian coordinate
system centered at the geometric origin of the billiard O, and consider the ball departing from a point
z inside the billiard with a certain velocity, and reaching the boundary at point P. Some point x0

on the segment zP will be the orthogonal projection of the center O, that is, the line zP will be
tangent to the circle with center O and radius ‖x0‖. Also, if the ball incides on P forming an angle
θ0 with respect to the line containing OP, it will rebound with an angle −θ0 with respect to the same
line OP; thus, after running a distance ‖x0P‖ along the new direction, it will touch again the inner
circumference with center O and radius ‖x0‖, Sx0(O). This reasoning applies without changes after
each rebound, so the trajectory of the ball is such that each straight segment part of it, is tangent to the
circumference Sx0(O) (see Figure 2, where the trajectory starting from a point on the bisector line,
with coordinates (2r/9, 2r/9) and initial angle 0.469π, r being the radius of the circumpherence, is
shown after 50 rebounds).

Figure 2: Caustics in a circular billiard

Due to this property, that circumference is called the caustic of the trajectory (geometrically, it is
just the envelope).

Figure 3: Closed trajectories in a circular billiard Figure 4: Non-closed trajectories in a circular
billiard

The trajectory in Figure 2 is not closed. One could wonder whether there exists closed trajecto-
ries or not, so let us try with a different initial angle. Figure 3 shows the result of taking the same
initial point but with initial angle (with respect to the horizontal) π/2, after 50 iterations. The caus-
tic is drawn in blue. For a generic trajectory, though, we get a non-closed orbit; the first example
considered, that of an initial angle 0.469π, gives the graph in Figure 4 after 200 iterations.

Notice, however, that none of these trajectories is dense: the inner region bounded by the caustic
is never crossed. It turns out that there exists a close relation between caustics and closed orbits on
any billiard with perimeter determined by a conic, due to a classical result on Projective Geometry
discovered by J. V. Poncelet (1822).
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Theorem 8 (Poncelet porism) Consider two confocal conics Cinn and Cout. Take a point p0 on the
outer conic Cout and draw a line from it, tangent to the inner conic Cinn. Determine the point of
intersection of this line with the outer conic, and call it p1. Repeat this procedure with p1 as the
starting point, instead of p0, and consider the resulting trajectory. If it is closed after n rebounds,
then any other trajectory similarly constructed will be closed after n rebounds. In other words, given
that a single closed polygonal trajectory exists, all other trajectories sharing the same caustic will be
closed, with the same period.

There are many proofs of this theorem available. Perhaps the most accessible is the one in [6].
The reasoning given at the beginning of this subsection proves the theorem for the particular case of
concentric circles. In 3.2 we will present the proof of a weaker result valid when the outer conic is an
ellipse.

Remark 9 The existence of the caustic, and its forbidden interior, can be physically interpreted in
terms of the conservation of angular momentum. Recall that L = r × v. Hence, its norm is L =
rv sinα, where α is the angle between r and v. As L lies on the normal to the billard’s plane, its
direction is constant and so the fact that is conserved translates into the constancy of L as well. We
can write, then sinα = L/rv = C/r, with C > 0 constant. The trigonometric bound sinα ≤ 1
then yields r ≥ C. We have considered the degenerate case of a circular billiard (where the caustics
are also circles), but as we will see, Poncelet porism can also be physically interpreted in the elliptic
case.

3.2 Elliptic billiards
In this section all vectors will be considered three-dimensional. To this end, consider that the ellipse
describing the billiard lies on the z = 0 plane.

Continuing with more complicated shapes, we now analyze elliptic billiards. Suppose the bound-
ary is given by an ellipse of major semiaxis a, and minor semiaxis b. Let f = (

√
a2 − b2, 0, 0) be

the position of one of the foci, and −f that of the other. If r(t) denotes the position of the ball at the
instant t, define the focal distances (see Figure 3) r1(t) = r(t)− f and r2(t) = r(t) + f .

−f f

r

r2 r1

Figure 5: Ellipse geometry

The following result implies (because we already have a first integral, the energy) that an elliptic
billiard is an integrable system.
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Theorem 10 The function I = 〈L1,L2〉, where Li(t) = ri(t)× v(t) (for 1 ≤ i ≤ 2) and v(t) = ṙ(t)
is the velocity, is a first integral of the motion.

The proof is a long but straightforward computation, which is best done introducing elliptic co-
ordinates (ξ, η) in the plane of the ellipse, defined in terms of the Cartesian coordinates (x, y) as
x = f cosh ξ cos η, and y = f sinh ξ sin η.

The computation of the angular momenta L1, L2 from r1 = (x − f, y, 0), r2 = (x + f, y, 0) and
v, leads to that of

I = 〈L1,L2〉 = f 4(cosh2 ξ − cos2 η)(− sin2 η · ξ̇2 + sinh2 ξ · η̇2) . (2)

It is clear that this expression does not change under the transformation occuring at the point of
impact, (ξ̇, η̇) 7→ (−ξ̇, η̇), hence the theorem follows.

The next (purely geometric) result, taken from [11], tells us what the caustics of an elliptic billiard
are.

Theorem 11 A billiard trajectory inside an ellipse forever remains tangent to a fixed confocal conic.
More precisely, if a segment of a billiard trajectory does not intersect the segment F1F2, then all the
segments of this trajectory do not intersect F1F2 and are all tangent to the same ellipse with foci
F1 and F2; and if a segment of a trajectory intersects F1F2, then all the segments of this trajectory
intersect F1F2 and are all tangent to the same hyperbola with foci F1 and F2.

Proof. Let A0A1 and A1A2 be consecutive segments of a billiard trajectory, see Figure 6. Assume
that A0A1 does not intersect the segment F1F2 (the other case is dealt with similarly). It follows from
the reflection law (Theorem 6), that the angles made by segments F1A1 and F2A1 with the ellipse are
equal. Likewise, the segments A0A1 and A2A1 make equal angles with the ellipse. Hence the angles
∠A0A1F1 and ∠A2A1F2 are equal. Reflect F1 in A0A1 to point F ′1, and F2 in A1A2 to F ′2. Let B
be the intersection point of the lines F ′1F2 and A0A1, and C of the lines F ′2F1 and A1A2. Consider

B C

F ′1
F ′2

F1 F2

A1

A0
A2

Figure 6: Caustics in an elliptic billiard

the ellipse E1 with foci F1 and F2 that is tangent to the line A0A1. Since the angles ∠F2BA1 and
∠F ′1BA0 are equal, and so are the angles ∠F ′1BA0 and ∠F1BA0, the angles ∠F2BA1 and ∠F1BA0

are equal. Again by the reflection law, the ellipse E1 touchesA0A1 at the pointB. Likewise the ellipse
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E2 with foci F1 and F2 touches A1A2 at the point C. We want to show that these two ellipses coincide
or, equivalently, that |F1B|+|BF2| = |F1C|+|CF2|, which is reduced to |F ′1F2| = |F1F ′2|. Notice that
the triangles4F ′1A1F2 and4F1A1F

′
2 are congruent. Indeed, |F ′1A1| = |F1A1| and |F2A1| = F ′2A1|

by symmetry. In addition, the angles ∠F ′1A1F2 and ∠F1A1F
′
2 are equal: the angles ∠A0A1F1 and

∠A2A1F2 are equal, hence so are the angles ∠F ′1A1F1 and ∠F ′2A1F2, and adding the common angle
∠F1A1F2 implies that ∠F ′1A1F2 = ∠F1A1F

′
2. Equality of the triangles 4F ′1A1F2 and 4F1A1F

′
2

implies that |F ′1F2| = F1F ′2|, which had to be proven.
As an immediate consequence of this theorem, we have for elliptic billiards the same relation

between caustics and closed orbits that we found in the circular case, namely: Given that a single
closed polygonal trajectory exists, all other trajectories sharing the same caustic will be closed, with
the same period.

There is also an interpretation of Theorem 11 in terms of integrals of motion. Let our elliptic table
be given by its semiaxes a, b. The constant-coordinates grid defined by the elliptic coordinates can be
described by the one-parameter set of confocal conics

x2

a2 + λ
+

y2

b2 + λ
= 1 (3)

where the original ellipse corresponds to λ = 0, for values λ ∈ ]−b2,+∞[ we get a family of ellipses
sharing their foci, and for λ ∈ ]− a2, b2[ we have a family of confocal hyperbolae orthogonal to that
of the ellipses.

Suppose now that the initial segment of a trajectory is tangent to one of these constant-coordinate
curves. Can we tell which one is going to be? If the segment is described by the equation y = mx+c,
the tangency condition means that there exists a point (x0, y0) belonging to both curves, the line
y = mx+ c and a certain member of the family (3), yielding the system

x20
a2 + λ

+
y20

b2 + λ
= 1

y0 = mx0 + c .

After some algebraic manipulations, we get (m2 + 1)λ = c2 − b2 − m2a2. Thus, the value of λ
determining the tangent confocal conic is

λ =
c2 − (m2a2 + b2)

1 +m2
. (4)

Notice that, because of Theorem 11, all the subsequent segments of the trajectory are tangent to the
same conic, and the preceding reasoning applies to any of them. In other words, λ is a first integral of
motion.

Thus, we have two known integrals, I = 〈L1,L2〉 and a new one λ. They are not independent,
though (again, the proof is a long but straightforward computation).

Proposition 12 The integrals I and λ are related by

λ = I − b2 .
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4 Periodic orbits
In this section, following Sieber [10], we determine the conditions that a trajectory on an elliptic
billiard must satisfy in order to be periodic (notice how this approach is different to the one used in
previous works [3, 5] where periodic orbits are found by numerical brute force and trial and error,
following a trajectory until it passes again through the intial point, within a certain tolerance). For
notational reasons, we will introduce a rescaling of the invariant I = 〈L1,L2〉 by the energy (which
is also an invariant):

α =
I

4E
. (5)

Our main tool to determine periodic orbits is the Arnold-Liouville-Mineur theorem, and this re-
quires computing the action coordinates of the elliptic billiard. As these are given by integrals of
the momenta, and they turn out to be related to the first integrals of the system, it will be convenient
to write the momenta in terms of the integrals E,α (we could as well take E, I = L1L2, but the
expressions in terms of E,α are cleaner, as we will see). Some long and boring computations lead to

p2η = E(f 2 sin2 η + α) , (6)

and
p2ξ = E(f 2 sinh2 ξ − α) . (7)

Now we are ready to build the action integrals. These are

Iξ =
1

2π

∮
pξ dξ =

√
E

π

∫ ξ1

ξ0

√
f 2 sinh2 ξ − α dξ (8)

Iη =
1

2π

∮
pη dη =

2
√
E

π

∫ η1

η0

√
f 2 sin2 η + α dη , (9)

where the limits of integration are given by

• For α > 0, ξ0 = asinh

√
|α|
f
, ξ1 = asinh b

f
, η0 = 0, η1 = π

2
.

• For α < 0, ξ0 = 0, ξ1 = asinh b
f
, η0 = arcsin

√
|α|
f
, η1 = π

2
.

Not surprisingly at all, the integrals in (8) and (9) can be solved in terms of elliptic functions:

Iξ =



√
E

π

[
a

b

√
b2 − α− f

κ
E

(
arcsin

√
b2 − α
b2

, κ

)]
√
E

π

[
ab√
b2 − α

− α

f
F

(
arcsin

√
b2

b2 − α
,

1

κ

)
− fE

(
arcsin

√
b2

b2 − α
,

1

κ

)]
,

(for α > 0 and α < 0, respectively) and

Iη =


2
√
E

π

f

κ
E (κ) , for α > 0

2
√
E

π

[
α

f
K

(
1

κ

)
+ fE

(
1

κ

)]
, for α < 0 .
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where the modulus is
κ =

f√
f 2 + α

,

and F,E denote, respectively, the elliptic incomplete integrals of the first and second kind, while K
is the complete elliptic integral of the first kind.

The periodic orbits live on the tori given by the Arnold-Liouville-Mineur theorem, and in order
to be closed trajectories on these tori, the quotient of the angular frequencies wξ, wη must be rational.
Thus, we have the condition that, for some m,n ∈ N,

wξ
wη

=

∂E
∂Iξ

∣∣∣
Iη

∂E
∂Iη

∣∣∣
Iξ

= − ∂Iη
∂iξ

∣∣∣∣
E

= −
∂iη
∂α

∣∣∣
E

∂Iξ
∂α

∣∣∣
E

=
n

m
, (10)

where, by the properties of elliptic integrals,

∂Iξ
∂α

∣∣∣∣
E

=


−
√
Eκ

2πf
F

(
arcsin

√
b2 − α
b2

, κ

)
, for α > 0

−
√
E

2πf
F

(
arcsin

√
b2

b2 − α
,

1

κ

)
, for α < 0 ,

and

∂Iη
∂α

∣∣∣∣
E

=


√
Eκ

πf
K(κ) , for α > 0

√
E

2πf
K
(
1
κ

)
, for α < 0 .

Two possibilities that can appear, depending on the sign of the invariant α. For instance, when
α > 0 (the case α < 0 can be similarly analyzed) the condition for periodic orbits (10) reads

F

(
arcsin

√
b2 − α
b2

, κ

)
=

2m

n
K(κ) ,

or, by applying elliptic inverses, √
b2 − α
b2

= sn

(
2m

n
K(κ)

)
, (11)

which has a solution for all n ∈ N, n ≥ 3, and 1 ≤ m < n/2. The integers n,m have the interpreta-
tion of number of rebounds of the orbit and its rotation number5, respectively.

The values of κ (hence, α) that satisfies (11) must be determined numerically but, fortunately,
there exist very fast and stable algorithms for dealing with elliptic functions.

5Roughly, how many times the trajectory makes a whole loop around.
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4.1 Practical computations
Let us see how the knowledge of the first integral α (as numerically computed in (11)) determines
the slope of the first segment of a closed orbit. We will make use of the invariant λ, which appeared
in subsection 3.2. There, we saw that λ parameterizes a family of confocal ellipses in such a way
that λ = 0 corresponds to the boundary ellipse of the billiard, and we could determine the value of
λ corresponding to the confocal ellipse to which the first segment of a trajectory is tangent. If that
segment belongs to the line y = mx+ c, we found in (4) that

λ =
c2 − (m2a2 + b2)

1 +m2
.

Suppose now we want to compute a closed n−orbit starting at a point (x0, y0) on the border of
the billiard. Let y = mx+ c be the line containing its initial segment. As it starts at (x0, y0), we must
have y0 = mx0 + c, or c = y0 −mx0. Substituting in the expression for λ above, we get a relation
between the slope m and λ: λ = ((y0 −mx0)2 − (m2a2 + b2))/(1 + m2). Moreover, in Proposition
12 we found a relation between λ and the invariant I . Let us make the assumption that E = 1/4, for
simplicity6. In this case, we have α = I , and also λ = α − b2. By considering these expressions for
λ together, we get a system of equations which leads to

α =
(y0 −mx0)2 −m2(a2 − b2)

1 +m2
.

This is the expression used in the Maxima code, but we can turn it into an explicit relation between
m and α: First, write (1+m2)α = (y0−mx0)2−m2(a2−b2), then factor terms containing powers of
m, (α+x20+a

2−b2)m2+2x0y0m−y20 = 0, and finally getm =
(
x0y0 ±

√
α + a2 − b2 + 2x0y0

)
/(α+

a2 − b2 + x20).
Although the computations can be made simbollically, for large orbits this would cause a buffer

overflow, hence the code converts everything to bfloats, thus introducing small rounding errors that,
if so desired, can be avoided substituting the bfloat commands by radcan ones.

5 Simulations in a CAS

5.1 Elliptic billiards
The command elliptic_billiard(a,b,xinit,yinit,phi0,N) simulates the behavior
of an elliptic billiard table, where a,b are the major and minor semiaxes of the bounding ellipse,
xinit,yinit are the coordinates of the initial point (it can lay in the interior of the ellipse), phi0
is the initial angle (measured counterclockwise in radians with respect to the horizontal), and the
positive integer N is the number of rebounds.

Let us see some examples of their use:

(%i1) elliptic_billiard(4,3,2.5,1.13,0.7*%pi,50);

6That just means that we will be selecting a particular n−orbit among the many possible.
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The same initial point but with a different initial slope:

(%i2) elliptic_billiard(4,3,2.5,1.13,%pi/3,50);

Here we see the degenerate case of a circular billiard:

(%i3) elliptic_billiard(2,2,4/9,4/9,0.469*%pi,50);
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An animation of this last example can be produced with the previous command suitably modified:

(%i4) elliptic_billiard_animated(2,2,4/9,4/9,0.469*%pi,50);

For the sake of completeness, let us comment on some of the computations required in the function
elliptic billiard (see Section 6). First, assume that we already know a point of impact with
the boundary, (xn, yn), and the velocity after the rebound, (un, vn), so we want to determine the next
point of impact (xn+1, vn+1). The parametric equations of the line r(t) joining these two points are
r1(t) = xn + tun and r2(t) = yn + tvn. This line meets the ellipse at two points, determined by the
condition r21/a

2 + r22/b
2 = (xn + tun)2/a2 + (yn + tvn)2/b2 = 1. Developing this expression and

taking into account that (xn, yn) lies on the ellipse (so x2n + y2n = 1) we get(
2xnun + tu2n

a2
+

2tynvn + tv2n
b2

)
t = 0 ,

which has two solutions: t = 0 (corresponding to (xn, yn)), and the one of interest for us: t =
−2(xnunb

2 + ynvna
2)/(b2u2n + a2v2n). By substituting in the equations above, we find the coordinates

of the point of intersection: 
xn+1 = xn − 2

xnunb
2 + ynvna

2

b2u2n + a2v2n
un

yn+1 = yn − 2
xnunb

2 + ynvna
2

b2u2n + a2v2n
vn .

Next, we need to compute the velocity vector after the impact, (un+1, vn+1). This vector is the
reflection of the incoming velocity (un, vn) across the normal line of the ellipse at (xn+1, yn+1). The
inward normal7 (N1, N2) is easily found:

(N1, N2) =−
(
2xn
a2
, 2yn
b2

)
‖
(
2xn
a2
, 2yn
b2

)
‖

=
−1√

b4x2n+1 + a4y2n+1

(b2xn+1, a
2yn+1) .

7We need to take the inward normal, so the ball bounces into the ellipse.
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The reflection of (un, yn) across the line determined by (xn+1, yn+1) and (N1, N2) is given by
(un+1, vn+1) = (un, vn)− 2 〈(un, vn), (N1, N2)〉 (N1, N2) , which leads to the expressions used in the
code (compare with [3]):

un+1 = un −
2(b2xn+1un + a2yn+1vn)

b4x2n+1 + a4y2n+1

b2xn+1

vn+1 = vn −
2(b2xn+1un + a2yn+1vn)

b4x2n+1 + a4y2n+1

a2yn+1 .

The preceding reasonings can not be applied to the first segment of the orbit, as (x0, y0) does not
necessarily lie on the ellipse8. Thus, we start with the initial point (x0, y0) and the initial velocity,
which is the unitary vector (u0, v0) along the direction given by the slope m0 = tanφ0, that is,
(u0, v0) = (1, tanφ0) /

√
1 + tan2 φ0 (the particular cases φ0 = π/2 and φ0 = 3π/2, for which

(u0, v0) are (0, 1) and (0,−1), respectively, are treated separatedly).
We want an explicit formula for (x1, y1) depending on these data alone. The initial segment of

the orbit is the line y = m0x + c0, so c0 = y0 −m0x0. Substitution into the ellipse’s equation yields
(x/a)2 + ((m0x+ c0)/b)

2 = 1 , so the x coordinate of the new point must satisfy (b2 + a2m2
0)x

2 +
2a2m0c0x+a2(c20−b2) = 0 , a quadratic equation with two solutions, depending only on (a, b,m0, c0).
Let us label them x+ ≥ x−. A geometric interpretation of y = m0x + c0 and the relative positions
of (x0, y0), (x1, y1), makes clear that we must choose x+ when u0 > 0 (so the line y = mx0 + c0 is
traveled left to right and the abcissa x1 is to the right of x0), and choose x− when u0 < 0 (so the line
y = mx0 + c0 is traveled right to left and the abcissa x1 is to the left of x0).

5.2 Periodic orbits
5.2.1 Case I > 0 (elliptic caustic)

The function is norbits elliptic(a,b,x0,N,m). Its syntax should be clear, the only caveat
is that N represents the number of points in the orbit (number of bounces or rebounds), while m
represents the rotation number (roughly speaking, how many times the closed orbit winds around),
which must satisfy the restriction m < N/2. As the starting point is taken on the ellipse, only
the initial coordinate xinit is needed (the corresponding yinit is determined from the ellipse
equation). Here are some examples, starting with a 4−orbit on an ellipse of semiaxes a = 4, b = 3,
and rotation number N = 1 (the initial point is taken at x0 = 1.3):

(%i5) norbits_elliptic(4,3,1.3,4,1);

8In the formulae for (un+1, vn+1) we use the expressions for (xn+1, yn+1), which were obtained under the assumption
that (xn, yn) was on the ellipse.
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(%i6) norbits_elliptic(4,3,2.25,11,3);

(%i7) norbits_elliptic(4,3,1.3,35,6);
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5.2.2 Case I < 0 (hyperbolic caustic)

The command and syntax are completely analogous to the previous one. It will suffice to give an
example of its use:

(%i8) norbits_hyperbolic(5,3,1.28,4,1);

As a particular feature of this case, there are some conditions that must be satisfied in order to get
an orbit. If that does not occur, a message will be issued.

(%i9) norbits_hyperbolic(4,3,1.28,6,1);
(%o9) With these parameters, the motion takes place on a complex
torus. Please, select them so the condition b/a<sin(m*%pi/N) is
satisfied

5.3 Poincaré sections
It is also possible to analyze Poincaré sections nof elliptic billiards, which are the basic tool to study
the onset of chaos in a dynamical system [9],[12]. This is done by the function below, whose argu-
ments are the semiaxes a, b, a list of initial conditions of the form [[θ0, φ0], . . . , [θk, φk]] (such that
the initial point on the ellipse is (x0, y0) = (a cos θ0, b sin θ0) and the slope of the initial trajectory is
m0 = tanφ0), and the number of iterations N . As an example, with the following command we com-
pute the Poincaré section of an elliptic billiard of semi-axes a = 4, b = 3, following the trajectories of
11 points given by initial conditions of the form [θj, φj] = [π/3,−π + 2πj/10], along 100 rebounds:

(%i10) eb_poincare(4,3,makelist([%pi/3,-%pi+2*j*%pi/10],j,0,10),100);
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Notice how these Poincaré sections are, basically, deformations of that of a harmonic oscillator,
reflecting the integrability of elliptic billiards.

6 Code example
As an example of the practical implementation of the ideas exposed in the paper, here is the code of
the Maxima function elliptic_billiard and the auxilliary norbits_elliptic_angle
used to simulate the behavior of an elliptic billiard table. The syntax is

elliptic_billiard(a,b,xinit,yinit,phi0,N)

where a,b are the major and minor semiaxes of the bounding ellipse, xinit,yinit are the coor-
dinates of the initial point (it can lay in the interior of the ellipse), phi0 is the initial angle (measured
counterclockwise in radians with respect to the horizontal), and the positive integer N is the number
of rebounds.

(%i1) norbits_elliptic_angle(a,b,N,m):=block(
[foc:sqrt(aˆ2-bˆ2),eeqqnn,xx],
if is(m>=N/2) then

return("The rotation number must satisfy m<N/2"),
eeqqnn:bfloat(sqrt(bˆ2-xx)/(b)-jacobi_sn((2*m/N)*elliptic_kc(focˆ2/(focˆ2+xx)),focˆ2/(focˆ2+xx))),
bf_find_root(eeqqnn,xx,0.001,bˆ2)
)$
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(%i2) elliptic_billiard(a,b,xinit,yinit,phi0,N):=
block(
[ratprint:false,solns,xp,xm,segments],
local(x,y,u,v,m,c),
if is(a<b) then

return("The semiaxes must satisfy b<a"),
if (is(not(integerp(N))) or is(N<1)) then

return("The number of rebounds must be a positive integer"),
if is(bfloat((xinit/a)ˆ2+(yinit/b)ˆ2-1)>0) then

return("The initial point does not lie on the ellipse or its interior"),
if (is(phi0=%pi/2) or is(phi0=0.5*%pi))

then (x[0]:bfloat(xinit),y[0]:bfloat(yinit),
x[1]:x[0],y[1]:b*sqrt(1-(x[1]/a)ˆ2),u[0]:0,v[0]:1)

elseif (is(phi0=3*%pi/2) or is(phi0=1.5*%pi))
then (x[0]:bfloat(xinit),y[0]:bfloat(yinit),
x[1]:x[0],y[1]:-b*sqrt(1-(x[1]/a)ˆ2),u[0]:0,v[0]:-1)

else (
m[0]:bfloat(tan(phi0)),
x[0]:bfloat(xinit),
y[0]:bfloat(yinit),
u[0]:1/sqrt(1+(m[0])ˆ2),
v[0]:m[0]/sqrt(1+(m[0])ˆ2),
c[0]:y[0]-m[0]*x[0],
solns:bfloat(map(’rhs,solve(
(bˆ2+aˆ2*(m[0])ˆ2)*xˆ2+2*aˆ2*m[0]*c[0]*x+aˆ2*((c[0])ˆ2-bˆ2),x))),
xp:lmax(solns),
xm:lmin(solns),
if is(u[0]<0) then x[1]:xm
elseif is(u[0]>0) then x[1]:xp,
y[1]:m[0]*x[1]+c[0]

),
u[1]:u[0]-2*(bˆ2*x[1]*u[0]+aˆ2*y[1]*v[0])*bˆ2*x[1]/(bˆ4*(x[1])ˆ2+aˆ4*(y[1])ˆ2),
v[1]:v[0]-2*(bˆ2*x[1]*u[0]+aˆ2*y[1]*v[0])*aˆ2*y[1]/(bˆ4*(x[1])ˆ2+aˆ4*(y[1])ˆ2),
for j:1 thru N do (
x[j+1]:x[j]-2*(x[j]*u[j]*bˆ2+y[j]*v[j]*aˆ2)*u[j]/(bˆ2*(u[j])ˆ2+aˆ2*(v[j])ˆ2),
y[j+1]:y[j]-2*(x[j]*u[j]*bˆ2+y[j]*v[j]*aˆ2)*v[j]/(bˆ2*(u[j])ˆ2+aˆ2*(v[j])ˆ2),
u[j+1]:u[j]
-2*(bˆ2*x[j+1]*u[j]+aˆ2*y[j+1]*v[j])*bˆ2*x[j+1]/(bˆ4*(x[j+1])ˆ2+aˆ4*(y[j+1])ˆ2),
v[j+1]:v[j]
-2*(bˆ2*x[j+1]*u[j]+aˆ2*y[j+1]*v[j])*aˆ2*y[j+1]/(bˆ4*(x[j+1])ˆ2+aˆ4*(y[j+1])ˆ2)
),
segments:makelist([x[j],y[j]],j,0,N),
wxdraw2d(proportional_axes=xy,
color=red,line_width=2,nticks=75,
parametric(a*cos(t),b*sin(t),t,0,2*%pi),
color=orange,line_width=1,
points_joined=true,
point_type=filled_circle,
points(segments))
)$
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